Poruchy, Střechy

Poruchy kotvených střech 2 – Nesprávně provedené kotvení detailů – příčina havárií střech

Spolehlivost každé střechy je přímo závislá na správném provedení střešních detailů. Je tomu tak i u plochých střech stabilizovaných kotvením proti destruktivním účinkům větru. Mělo by být samozřejmostí, že realizátor střechy bezchybně upevní dané střešní vrstvy k podkladu pomocí kvalitních kotev, jejichž počet a rozmístění v ploše střechy odpovídá kotevnímu plánu, předem zpracovanému podle platných norem a předpisů. Proč však i některé takto na první pohled správně provedené kotvené ploché střechy selhávají?

Příčinou je často nesprávně provedené kotvení detailu okraje střechy a také zanedbání zdánlivého detailu, spočívajícího v nedodržení správné geometrie kotvy v přesahu upevňované hydroizolace. Pro velkou četnost poruch a havárií právě z těchto příčin se tato část věnuje zejména selhání střech s hydroizolační vrstvou z plastových fólií.

Výskyt větrných jevů na našem území
Každá budova je vystavena námaze vyvolané větrem, sání větru působí jak na fasády budov, tak i na jejich střechy. Významnou složkou silného větru je nárazovitý vítr, který bývá častým impulzem při destrukci chybně provedených střech. Než se budeme podrobně věnovat tomuto tématu, je dobré si připomenout, jak silně u nás fouká. Zde je několik příkladů:
– 1994: 45 m/s (162 km/h) Praha-Ruzyně,
– 2002: 43 m/s (156 km/h) Praha-Karlov;

Orkán KYRILL:
– 2007: 60 m/s (216 km/h) Sněžka,
– 2007: 47 m/s (168 km/h) Praha-Ruzyně;

Vichřice EMMA:
– 2008: 46 m/s (166 km/h).

Sílu větru klasifikuje a charakterizuje například Beaufortova stupnice, která určuje celkem 12 stupňů intenzity větru. Pro účel tohoto textu přináší tabulka charakteristiky 7. až 12. stupně, při kterých dochází k častým problémům střech od částečných defektů až po likvidaci částí nebo celků střešních konstrukcí.

Tabulka: Část Beaufortovy stupnice

Stupeň BS

Charakteristika

Rychlost

[km/h]

Rychlost

[m/s]

7

prudký vítr, vítr pohybuje celými stromy; chůze proti větru je obtížná

50–61

13,9–17,1

8

bouřlivý vítr, vítr ulamuje větve; chůze proti větru je normálně nemožná

62–74

17,2–20,7

9

vichřice, vítr způsobuje menší škody na stavbách (strhává komíny, tašky a plechy ze střech)

75–88

20,8–24,4

10

silná vichřice; vyvrací stromy; přináší škody bydlištím

89–102

24,5–28,4

11

mohutná vichřice, vyskytuje se velmi zřídka, působí rozsáhlá zpustošení

103–117

28,5–32,6

12

orkán; ničivé účinky

> 117

> 32,6

Beaufortova stupnice: V roce 1805 ji vytvořil kontraadmirál britského loďstva sir Francis Beaufort. Původně byla tato stupnice určena pro vhodnost plavby po moři s určitým typem lodních plachet, pro nenámořní účely byla upravena v roce 1850, kdy byla také určena rychlost různých typů větru pomocí anemometru. Beaufortova stupnice byla mezinárodně standardizována v roce 1923.

Ze statistik meteorologů i energetiků vyplývá, že větrné kalamity trápí Českou republiku v průměru jednou za deset let. Ničivé vichřice tu škodily například v letech 1929, 1955, 1967, 1976, 1984, 1990, naposledy v letech 2007 orkán Kyrill a v roce 2008 vichřice Emma. V návaznosti na tuto datovou řadu lze očekávat podobně ničivé vichřice v horizontu pěti až deseti let, přesně však nelze příchod orkánu předpovědět. Každopádně by měly být střechy svojí konstrukcí a provedením na tento meteorologický jev připraveny.

Co dokáže vítr
Vítr namáhá plochou střechu v jejích sektorech s různou intenzitou, která navíc vzrůstá spolu s rychlostí větru. Podstatná je skutečnost, že právě okraj ploché střechy je nejvíce namáhán působením větru. Mnoho havárií kotvených plochých střech má svůj počátek právě v nesprávném provedení detailu u obvodu střechy při přechodu hydroizolace z plochy na atiku nebo na přilehlou stěnu. Když se vlivem větrné námahy uvolní upevnění hydroizolace na okraji střechy a navíc dojde k podfouknutí hydroizolační vrstvy, nastává vážná destrukce střešního pláště. Působení větru na okraj střechy ukazuje schéma na obr. 1 a shodnou situaci obr. 2 a 3.

Obr. 1: Působení větru na okraj střechy – schéma

Obr. 2: Působení větru na okraj střechy – realita na střeše Obr. 3: Působení větru na okraj střechy – realita na střeše Obr. 4: Havarovaný detail střechy v důsledku vytržení lišty u paty atiky znamená deformaci fólie, znesnadnění odtoku vody

Teorie a praxe v provedení klíčového detailu
Pokud dojde i jen k částečnému uvolnění upevnění kotvené hydroizolace u okraje střechy (nejčastěji koutového profilu, ale i ukončovacího profilu na atice či stěně), záleží pak již jen na intenzitě a trvání namáhání větrem, zda selhání upevnění tohoto detailu přispěje i k větší destrukci ploché střechy. Nastává dominový efekt a postupně selhává i kotvení v ploše, k čemuž přispívá i časté nerespektování další důležité montážní zásady, a tou je správné umístění kotvy v přesahu (o tom až v závěru textu).

Teoreticky je opracování detailu přechodu z plochy střechy na atiku uvedeno v montážních předpisech většiny výrobců včetně grafického znázornění, v kvalitních montážních návodech nechybí ani podrobný popis pracovního postupu. Poplastovaná lišta tvaru „L“ má být upevněna minimálně čtyřmi kotvami na běžný metr buď do svislé atiky (stěny), anebo do vodorovného podkladu skrz ostatní střešní vrstvy. Zdánlivě prosté, v praxi však příliš často dochází k uvolnění lišty z podkladu a tím i k uvolnění upevněné hydroizolace z plastové fólie.

Obr. 5: Havárie plochých střech v důsledku námahy větrem – selhání kotvení okraje střechy bylo první fází selhání celé střechyObr. 6: Havárie plochých střech v důsledku námahy větrem – selhání kotvení okraje střechy bylo první fází selhání celé střechyObr. 7: Havárie plochých střech v důsledku námahy větrem – selhání kotvení okraje střechy bylo první fází selhání celé střechy

Obr. 8: Typický projev vytržení kotvení u paty atikyObr. 9: Upevnění koutové lišty do tenkého plechu sendvičového panelu pomocí šroubů je vysoce rizikové a většinou časem selháváObr. 10: Upevnění koutové lišty do tenkého plechu sendvičového panelu pomocí šroubů je vysoce rizikové a většinou časem selhává

Obr. 11: Vytržená ukončovací lišta hydroizolační fólie z rizikového podkladu z dutých cihel upevněná nevhodnými natloukacími hmoždinkami v počtu 2 kusy na běžný metr (!)Obr. 12: Do vysoce rizikového podkladu z dutých cihel nelze bezpečně kotvit běžnými natloukacími hmoždinkami!Obr. 13: Do vysoce rizikového podkladu z dutých cihel nelze bezpečně kotvit běžnými natloukacími hmoždinkami!

Příčiny selhání detailu 
Detail s koutovou lištou v praxi selhává zejména ze dvou příčin. První příčinou kolapsu je uvolnění upevnění, aplikovaného do svislé konstrukce atiky. Uveďme dva velmi časté a problematické materiály, u kterých nejčastěji dochází k vytržení upevnění. Jedná se především o sendvičový fasádní panel, který u halových staveb zároveň vytváří atiku. Plech panelu, do kterého se aplikuje upevnění, je velice tenký, nejčastěji 0,4, popřípadě 0,5 mm, zcela výjimečně 0,6 mm. Upevnění lišty z poplastovaného plechu do takto tenkého ocelového plechu pomocí subtilních samovrtných šroubů je velmi rizikové.

Jiným častým rizikovým podkladem z hlediska vytržení kotvení lišty je dutinová a voštinová cihla. Zde se převážně používají běžné natloukací hmoždinky, určené do masivních materiálů, jejichž držení v tenkém cihlářském materiálu je často nedostatečné.

Obr. 14: Detail kotvení fólie u paty světlíku – při náporu větru sice vydrželo kotvení vlastního koutového profilu, fólie se ale odtrhla spolu s poplastovanou vrstvouObr. 15: Schéma obvyklého, ale nedostatečného kotvení koutové lišty k atice, tvořené sendvičovým panelemObr. 16: Správné kotvení u detailu atiky, kdy je přidána první staticky účinná linie kotev co nejblíže k patě atiky

Druhou příčinou kolapsu detailu koutové atikové lišty je fakt neznalosti a nerespektování ustanovení platné normy. Zásadní informaci k tomuto střešnímu detailu uvádí ČSN 73 1901: 2011 Navrhování střech – Základní ustanovení, kde se v bodě 8.26.8 dočteme: „Připevňovací prostředky použité k tvarovému řešení hydroizolačního povlaku v konstrukčním detailu se obvykle nezapočítávají do mechanického připevnění povlaku proti účinkům zatížení větrem.“ Připevňovacím prostředkem je zde právě koutová lišta z poplastovaného plechu, kterou většina firem považuje za dostatečné zajištění obvodového kotvení ploché střechy. Tento předpoklad je však chybný, absentuje zde funkční, staticky účinné zajištění okraje střechy. První staticky účinná linie kotev je až v prvním přesahu dvou pásů fólie v ploše střechy, většinou ve vzdálenosti 1 až 2 metry od atiky. Kombinace rizikového podkladu, částečně nebo zcela nefunkčního kotvení a výrazného sání větru, namáhajícího okraj střechy, vede k selhání detailu, klíčového pro stabilitu ploché střechy.

Obr. 17: Zákres obvyklého a nedostatečného kotvení v detailu atiky (již došlo k vytržení koutové lišty)Obr. 18: Vyznačené správné kotvení v detailu atiky s přidanou první staticky účinnou linií kotev co nejblíže u paty atiky

Obr. 19: Ukázka možné přílohy kotevního plánu zhotoveného podle platných předpisů a norem se zákresem staticky účinného kotvení po obvodu střechy a obvodu střešní nástavbyObr. 20: Nesprávná poloha kotev vůči okraji upevňované fólie znamená významné oslabení odolnosti kotvené střechy vůči námaze větrem

Princip správného provedení detailu
Pro funkční provedení popisovaného detailu je kromě volby vhodného upevnění a jeho bezchybné aplikace do podkladu nutné respektovat výše uvedené ustanovení normy a provést ve vzdálenosti cca 150–250 mm od paty atiky první linii staticky účinného kotvení proti účinkům větru (v případě podkladu z trapézového plechu se vzdálenost odvíjí od rozteče horních vln, do kterých je kotveno). Tato linie kotvení se při zpracování detailu následně překryje buď fólií přecházející po stěně atiky, anebo se volí samostatné překrytí kotev pruhem fólie, popřípadě samostatnými přířezy. Je tak provedena staticky účinná linie kotvení co nejblíže atiky, která na sebe přebírá zatížení větrem, a upevnění vlastního koutového profilu nebo ukončovací lišty je mnohem méně namáháno. Je tak do značné míry eliminováno riziko selhání upevnění na okrajích ploché střechy.

Upevnění po obvodu střechy v kotevních plánech
Kotevní profil z poplastovaného plechu by v souladu s ustanovením normy neměl být využíván pro staticky účinné upevnění hydroizolace v detailu atiky. Tuto skutečnost by měly zohledňovat i statické výpočty (kotevní plány), které by měly vždy uvádět i potřebný počet kotev po obvodu střechy. Některé kotevní plány tuto skutečnost vůbec neberou v úvahu, a budí tak v uživatelích dojem, že k zajištění obvodu střechy postačí pouze profil z poplastovaného plechu.

Obr. 21: Důsledky nesprávné geometrie kotev v přesahu střešní fólie – větrem utržená hydroizolace střechyObr. 22: Důsledky nesprávné geometrie kotev v přesahu střešní fólie – větrem utržená hydroizolace střechy

Obr. 23: Detaily nesprávně umístěné kotvy a vytržené fólieObr. 24: Detaily nesprávně umístěné kotvy a vytržené fólieObr. 25: Správná geometrie kotvy – její okraj je minimálně 10 mm od okraje upevňované fólie

Geometrie kotvy v přesahu
Selže-li jeden prvek kotvené střechy, může nastat dominový efekt. Po uvolnění kotvení v detailu atiky se zatížení větrem přenáší dále na plochu střechy, a pokud je v ploše nesprávně provedená geometrie kotvy v přesahu, dojde k vytržení fólie v těchto místech a rozsáhlé destrukci. Toto chybné provedení výrazně snižuje odolnost kotvené střechy vůči větru. Od nepaměti platí, že kotva v přesahu musí být umístěna tak, aby okraj talířku (podložky, teleskopu) byl vzdálen minimálně 10 mm od okraje upevňované hydroizolační fólie. Je s podivem, jak časté je selhání střech právě z důvodu neznalosti a nedodržení této jednoduché zásady, kterou obsahuje většina prováděcích manuálů výrobců střešních fólií.

Závěr
Vzhledem k častým defektům kotvených střech, které mají – mimo jiné – počátek i v nesprávném provedení kotvení v detailu atiky, ale i v nesprávné geometrii kotvy v přesahu upevňované plastové fólie, lze doporučit, aby při zpracování aplikačních manuálů výrobci výrazněji upozornili na tuto problematiku. Zajisté by bylo vhodné, aby i autoři prováděcích projektů uvedli tyto zdánlivé maličkosti například v technických zprávách. V neposlední řadě by měl pracovník technického dozoru ověřit znalost realizační firmy a včas vyjasnit aplikační postupy v popisovaných detailech.

Třetí část textu se bude věnovat poruchám střech vzniklých v důsledku nesprávného upevnění tepelné izolace, nestabilitě podkladu a dalším souvislostem.

JOSEF KRUPKA
foto archiv autora, Aleš Oškera (19)

Tento text je věnován výročí orkánu Kyrill, který prověřil kvalitu a hlavně nekvalitu našich kotvených střech před deseti lety.

Prameny a literatura:
1) ČSN 731901 Navrhování střech – Základní ustanovení, 2011.
2) Odborné posudky o stavu plochých střech, autor Josef Krupka, 1999–2017.

Josef Krupka (*1955)
je absolventem SPŠ zeměměřické. Od roku 1992 pracoval se střešními materiály, podílel se na zavádění technologie kotvených střech v ČR. Ve své soukromé expertní a konzultační praxi se věnuje posudkové činnosti poruch všech střešních konstrukcí, specializuje se na problematiku plochých střech, nejen kotvených (od r. 1999). Je členem České hydroizolační společnosti, odborné společnosti při ČSSI (od r. 2012).